当前位置:首页 > 技术文章 > 正文内容

5 分钟认识 Python 的 ORM 框架-SQLAlchemy

zonemu1周前 (08-16)技术文章10

SQLAlchemy是一个流行的Python ORM框架,它提供了一种简单的方式来管理数据库。在本文中,我们将深入探讨SQLAlchemy的各个方面,包括安装、配置、模型定义、查询和关系等。我们还将介绍一些常用的SQLAlchemy扩展,以及如何使用它们来增强您的数据库管理。

一、安装和配置

在开始使用SQLAlchemy之前,您需要安装Python和SQLAlchemy。您可以从Python官方网站(
https://www.python.org/downloads/)下载Python,然后使用以下命令安装SQLAlchemy:

pip install sqlalchemy

安装完成后,您可以使用以下代码测试SQLAlchemy是否安装成功:

from sqlalchemy import create_engine

engine = create_engine('sqlite:///example.db')
connection = engine.connect()
result = connection.execute('SELECT 1')
print(result.fetchone())

运行该代码后,您将在控制台中看到“(1,)”的输出。这表明您已成功安装和配置SQLAlchemy。

二、模型定义

在SQLAlchemy中,模型是指用于表示数据库表的类。每个模型类都必须继承自“Base”类,并定义一个名为“tablename”的属性,该属性指定模型类对应的数据库表的名称。

例如,如果您的应用程序有一个名为“users”的数据库表,那么您可以编写一个名为“User”的模型类:

from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String(50), nullable=False)
    email = Column(String(50), nullable=False)

在上面的代码中,我们定义了一个名为“User”的模型类,它具有一个名为“id”的整数主键、一个名为“name”的字符串和一个名为“email”的字符串。

三、查询

在SQLAlchemy中,查询是指用于从数据库中检索数据的操作。您可以使用SQLAlchemy的查询API来执行各种类型的查询,例如简单查询、过滤查询、聚合查询和连表查询等。

以下是一些常用的查询示例:

  1. 简单查询

要执行简单查询,您可以使用以下代码:

from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

users = session.query(User).all()
for user in users:
    print(user.name, user.email)

在上面的代码中,我们使用SQLAlchemy的“session”对象来执行查询。我们查询所有用户并将它们打印到控制台。

  1. 过滤查询

要执行过滤查询,您可以使用以下代码:

from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

users = session.query(User).filter_by(name='John').all()
for user in users:
    print(user.name, user.email)

在上面的代码中,我们使用SQLAlchemy的“filter_by”方法来过滤用户。我们只查询名为“John”的用户并将它们打印到控制台。

  1. 聚合查询

要执行聚合查询,您可以使用以下代码:

from sqlalchemy.orm import sessionmaker
from sqlalchemy import func

Session = sessionmaker(bind=engine)
session = Session()

count = session.query(func.count(User.id)).scalar()
print(count)

在上面的代码中,我们使用SQLAlchemy的“func”模块来执行聚合查询。我们查询用户的数量并将其打印到控制台。

  1. 连表查询

要执行连表查询,您可以使用以下代码:

from sqlalchemy.orm import sessionmaker
from sqlalchemy import join

Session = sessionmaker(bind=engine)
session = Session()

query = session.query(User, Address).join(Address)
for user, address in query:
    print(user.name, address.street, address.city, address.state)

在上面的代码中,我们使用SQLAlchemy的“join”方法来执行连表查询。我们查询所有用户和它们的地址,并将它们打印到控制台。

四、关系

在SQLAlchemy中,关系是指用于连接模型之间的关联的属性。您可以使用SQLAlchemy的关系API来定义各种类型的关系,例如一对多关系、多对多关系和自引用关系等。

以下是一些常用的关系示例:

  1. 一对多关系

要定义一对多关系,您可以使用以下代码:

from sqlalchemy.orm import relationship

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String(50), nullable=False)
    email = Column(String(50), nullable=False)

    addresses = relationship('Address', back_populates='user')

class Address(Base):
    __tablename__ = 'addresses'

    id = Column(Integer, primary_key=True)
    street = Column(String(50), nullable=False)
    city = Column(String(50), nullable=False)
    state = Column(String(50), nullable=False)

    user_id = Column(Integer, ForeignKey('users.id'))
    user = relationship('User', back_populates='addresses')

在上面的代码中,我们定义了一个名为“User”的模型类和一个名为“Address”的模型类。我们使用“relationship”方法来定义用户和地址之间的一对多关系。

  1. 多对多关系

要定义多对多关系,您可以使用以下代码:

from sqlalchemy.orm import relationship

association_table = Table('association', Base.metadata,
    Column('user_id', Integer, ForeignKey('users.id')),
    Column('group_id', Integer, ForeignKey('groups.id'))
)

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String(50), nullable=False)
    email = Column(String(50), nullable=False)

    groups = relationship('Group', secondary=association_table, back_populates='users')

class Group(Base):
    __tablename__ = 'groups'

    id = Column(Integer, primary_key=True)
    name = Column(String(50), nullable=False)

    users = relationship('User', secondary=association_table, back_populates='groups')

在上面的代码中,我们定义了一个名为“User”的模型类和一个名为“Group”的模型类。我们使用“relationship”方法和“association_table”表来定义用户和组之间的多对多关系。

五、常用扩展

在SQLAlchemy中,有许多有用的扩展可用于增强您的数据库管理。以下是一些常用的SQLAlchemy扩展:

  1. Flask-SQLAlchemy:用于在Flask应用程序中使用SQLAlchemy的扩展。
  2. Alembic:用于数据库迁移和版本控制的扩展。
  3. SQLAlchemy-Searchable:用于全文搜索的扩展。
  4. SQLAlchemy-Utils:用于提供常用的SQLAlchemy实用程序的扩展。
  5. SQLAlchemy-Continuum:用于历史记录和版本控制的扩展。

六、总结

SQLAlchemy是一个流行的Python ORM框架,它提供了一种简单的方式来管理数据库。在本文中,我们深入探讨了SQLAlchemy的各个方面,包括安装、配置、模型定义、查询和关系等。使用愉快!

相关文章

linux发行版-openSUSE Agama 15安装程序发布:带来多项可用性升级

openSUSE旗下仍在开发中的全新Linux安装工具Agama,于近日推出v15版本,带来了界面增强、实用新功能等一系列改进,为用户带来更顺畅的系统安装体验!界面优化:细节之处见用心新版本在本地化设...

「图解」父子组件通过 props 进行数据交互的方法

1.组件化开发,经常有这样的一个场景,就是父组件通过 Ajax 获取数据,传递给子组件,如何通过 props 进行数据交互来实现,便是本图解的重点。2.代码的结构3.具体代码 ①在父组件 data 中...

react hooks自定义组件居然能这样做

前言  这里写一下如何封装可复用组件。首先技术栈 react hooks + props-type + jsx封装纯函数组件。类组件和typeScript在这不做讨论,大家别白跑一趟。接下来会说一下封...

10分钟搞定gitlab-ci自动化部署(gitlab ci 配置)

gitlab-ci 是持续集成工具/自动化部署工具,类似 jenkins。持续集成 是将代码集成到共享存储库并尽可能早地自动构建/测试每个更改的实践 - 通常一天几次。概述在编码完成时都会进行打包发布...

解决GitLab报错:not allowed to force push code to a protected branch

当 force push 代码的时候,可能会遇到如下错误:You are not allowed to force push code to a protected branch on this pr...

jenkins+gitlab 实现自动化部署(gitlab触发jenkins)

目录1、安装jdk,要记住安装路径2、安装maven,要记住安装路径3、安装git,要记住安装路径4、安装gitlab5、安装jenkins(centos7)创建安装目录下载通用war包启动和关闭Je...